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An investigation is presented that analyses the energy flows that are connected to the 
dynamical behaviour of coherent structures in a transitional flat-plate boundary layer. 
Based on a mathematical description of the three-dimensional coherent structures of 
this flow as provided by the Karhunen-Loive procedure, energy equations for the 
coherent structures are derived by Galerkin projection of the Navier-Stokes equations 
in vorticity transport formulation onto the corresponding basis of eigenfunctions. 
In a first step, the time-averaged energy balance - showing the energy flows that 
support the different coherent structures and thus maintain the fluctuations of the 
velocity field - is considered. In a second step, the instantaneous power budget is 
investigated for the particularly interesting case of a coherent structure providing 
a prime contribution to the characteristic spike events of the transitional boundary 
layer. As this structure shows a strong variation in energy, the question about which 
mechanisms cause these variations is addressed. Our results show that the occurrence 
of a spike must be attributed to an autonomous event and cannot be interpreted as 
just an epiphenomenon of the passage of a A-vortex. 

1. Introduction 
Although organized motions in turbulent flows certainly could have been observed 

since the experiments of Reynolds (1883) near the end of the previous century, their 
existence has been largely ignored. It was not until the mid 1950's that the presence of 
coherent structures was discussed (Townsend 1956). The existence of these structures 
indicates that the description of turbulent flows as being in a state of unstructured 
turmoil is not exact. However, it was just this picture of a non-deterministic structure 
of the turbulent flow that led to the classical statistical description of turbulence. 

While the statistical theory of turbulence did indeed provide the prime contribution 
to our current understanding of turbulence (see, for example, the textbook by Monin 
& Yaglom 1973), there are still many unanswered questions, leaving the entire subject 
far from being fully understood. One of the main problems - in fact, the main 
problem - of the statistical theory of turbulence, the well-known closure-problem, 
can be considered a consequence of the fact that this theory per dejnitionern cannot 
consider the detailed dynamics of the flow. As the Reynolds stresses are, in general, 
spatio-temporal functionals (and not functions) of the flow, neglect of the details 
of transient turbulent motion necessitates modelling these stresses in a situation of 
incomplete information. 
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However, as mentioned above, another view of turbulence, closely connected to the 
concept of ‘coherent structures’, gained attention about four decades ago (Townsend 
1956). This coherent structure approach to turbulence is motivated by the idea that 
turbulent flows are not just fluids in a state of complete disorder and chaos. Rather, 
such flows are composed of the superposition of a number of organized motions, the 
so-called ‘coherent structures’. An important implicit ingredient of this approach is 
the assumption - or hope -- that there is only a comparably small number of such 
structures that are relevant to the essential dynamics of the flow. If this is true, 
then the investigation of the dynamics of these structures would be a feasible task, 
promising not only deeper insight into the ‘nature’ of turbulent flows, but also the 
possibility of gaining additional information for modelling purposes. 

Since the work by Townsend, literally hundreds of papers have been written on 
the topic of coherent structures. Instead of attempting a general review of these, 
we refer the reader to the review articles by Cantwell (1981), Fiedler (1987), and 
Robinson (1991). Here, we will confine ourselves to pointing out a few of the 
contributions that are closely related to our subject. 

Some of the first detailed investigations of the near-wall structures of turbulent 
boundary layers on a mainly phenomenological level were reported by Einstein 
& Li (1956) and Kline &, Runstadler (1959). In the 1960’s, further important 
contributions towards an understanding of the structures of turbulent flows followed, 
represented by, among others, the works of Runstadler, Kline & Reynolds (1963), 
Kline et al. (1967), and Kim, Kline & Reynolds (1971) of the Stanford group. These 
investigations confirmed the relevance of coherent structures to the dynamics of 
turbulent flows, particularly because of their important contribution to turbulence 
production and momentum transport in the turbulent boundary layer. However, it 
was not until the impressive flow visualizations by Brown & Roshko (1974) that the 
idea of coherent structures having a significant role in turbulent flows was finally 
established. 

Important advances in the investigation of coherent structures took place at the 
end of the 1960’s and in the beginning of the 1970’s. In particular, progress was 
made in the formulation of explicit definitions of the term ‘coherent structure’ and 
the development of corresponding, widely accepted methods to determine these 
structures. There were essentially two different approaches. One of these approaches 
can be traced back to investigations by Gupta, Laufer & Kaplan (1971), Wallace, 
Eckelmann & Brodkey (1972), and Willmarth & Lu (1972). These authors introduced 
the techniques of conditioviat sampting or phase averaging to determine coherent 
structures. Detailed accounts of the development and results of these methods are 
given by Hussain (1983, 1986). The biggest difficulty with these techniques results from 
the fact that they require the researcher to already have an idea of some characteristic 
properties of the structure to be determined. Based on that, a criterion for the 
detection of this structure is developed that allows one to choose, from a set of data 
or flow visualizations of a flow field, all those realizations that meet the criterion. 
By an appropriate averaging of the selected flow fields, the prototypical coherent 
structure can be obtained. The main drawback of the methods based on conditional 
sampling are obvious in that the results depend strongly on the choice of criteria for 
the coherent structure. This choice, in turn, requires that information on the coherent 
structures be present before they are actually known. Thus, there is actually no fixed, 
a priori definition present at the base of techniques using conditional sampling. This 
is, of course, a serious disadvantage, since we think that the notion of a coherent 
structure is of little use as long as it is not possible to give a precise, quantitative 
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description of the role such structures play in the flow. Such a description, however, 
requires an exact definition and a mathematical description of the coherent structures. 

These criteria are met by a method that has been proposed by Lumley (1967). 
He suggested a technique based on the Karhunen-Loive expansion from probability 
theory (Loive 1955) that is now known as proper orthogonal decomposition (POD). 
It has the advantage of completely eliminating the need for any kind of external 
information or prior knowledge concerning the structures to be identified. For our 
investigation, we used the POD method to identify the coherent structures. A fairly 
complete account of this method is given by Lumley (1970), and several advanced 
topics are treated in a series of papers by Sirovich (1987) and in a recent review 
paper by Berkooz, Holmes & Lumley (1993). For a short review of works using this 
method, we refer the reader to Rempfer & Fasel (1994). 

The purpose of this investigation is to obtain a deeper understanding of the 
dynamics of coherent structures in a transitional flat-plate boundary layer. The data 
base available for our investigations was obtained from a direct numerical simulation 
of the three-dimensional, spatial evolution of a transitional flat-plate boundary layer 
(see 92). The physical domain considered here is composed of a certain stage of the 
transition process where a highly nonlinear evolution of Tollmien-Schlichting waves 
has set in and where the characteristic spike stages during breakdown to turbulence 
occur. Our emphasis on the transitional boundary layer has been dictated by current 
limitations in the simulation of spatially evolving turbulent flows. Owing to the 
need for long integration domains in the streamwise direction and requirements for 
resolution, direct numerical simulations (DNS) of fully developed turbulence are 
extremely expensive using currently available computers. The transitional boundary 
layer, on the other hand, is an interesting research topic per se. In addition, because 
of numerous analogies of transitional boundary layers to fully turbulent boundary 
layers (see, for example, Blackwelder 1983 and Rempfer & Fasel 1994), our work may 
also shed some light on open questions concerning fully turbulent flows. 

So the motivation for the investigations presented here was to gain deeper insight 
into the mechanisms behind the dynamical behaviour of coherent structures in tran- 
sitional boundary layers. In our previous investigation (Rempfer & Fasel 1994) we 
have shown that the dynamical coherent structures of the flat-plate boundary layer 
can be described by pairs of eigenfunctions that contain complete information on the 
spatial evolution of the structures. We also demonstrated that by considering coherent 
structures as described by such pairs of eigenfunctions, one can obtain a compact 
description of the complex phenomena occurring in the transitional boundary layer. 
While in our previous work we thus mainly focused on phenomenological aspects of 
the behaviour of coherent structures in our flat-plate boundary layer, we now want to 
emphasize the causality behind the scene. In other words, with the present paper we 
leave the kinematics of coherent structures described in our previous paper, and we 
now turn to the dynamics of these entities. Towards this end, we will proceed in two 
steps. In the first step, we investigate the time-averaged energy budget of the coherent 
structures, which yields information on the energy flows that support the different 
coherent structures and thus maintain fluctuations in the boundary layer. In the 
second step we look in detail at the instantaneous energy flows that are responsible 
for the dynamical interactions between different structures and the base flow. In 
particular, we will show, for an especially interesting case - that of a structure being 
responsible for the well-known spike signals of transition - which mechanisms are 
responsible for formation and decay of such a structure. Thus with this second step, 
we are addressing the first of the two generic questions concerning wall layers that 
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were raised (but excluded) by Aubry et al. (1988): ‘Where do the coherent structures 
in the wall region come .froin, i. e., what dynamical mechanism is responsible for their 
life cycle?’ 

A brief description of the numerical simulation that provided our data base is 
given in $2. Section 3 is devoted to the dynamical equations for the coherent 
structures, starting with a brief review of some of the properties of the Karhunen- 
Lokve eigenfunctions as provided by the POD method. After the derivation of the 
energy equations, a detailed interpretation of the terms making up this equation will 
be given. In 94, some of the properties of the structures that are treated in later 
sections are discussed to assist in mental visualization of the problem. Sections 5 
and 6, which form the main body of this paper, contain a thorough investigation of 
the time-averaged and the instantaneous energy flows, respectively. 

2. Data base 
The investigations discussed here are based on data obtained from a direct numer- 

ical simulation of an experiment by Kachanov et al. (1985) on controlled transition 
in a flat-plate boundary layer. A first version of this simulation was carried out by 
Rist & Fasel (1994), who achieved very good agreement between calculation and 
experiment up to the multi-spike stages of transition. At these stages, slight devia- 
tions from periodicity are already breaking the temporal symmetry of the imposed 
boundary conditions, indicating the onset of turbulence. The actual data used for 
the work reported here are from a repetition of the above simulation using improved 
resolution in all spatial directions as well as in time (Kloker 1993). 

The simulations by Rist & Fasel (1994) and by Kloker (1993) were based on the 
so-called spatial model, which allows study of the spatial evolution of a periodically 
disturbed, incompressible flat-plate boundary layer. The integration domain used 
in the simulation and the corresponding coordinate system are shown in figure 1. 
The numerical method used for these simulations employed finite differences in the 
streamwise and wall-normal (x- and y-) coordinates while the spanwise coordinate 
was discretized in function space using Fourier modes. For a more detailed discus- 
sion of the numerical method and, in particular, the boundary conditions used, see 
Kloker (1993), and Kloker, Konzelmann & Fasel (1993). Within the domain consid- 
ered here, the finite-difference resolutions in wall units were better than Axf = 5 in 
the streamwise direction and Ay+ = 3 in the wall-normal direction. For the spanwise 
direction, only 16 (aliasing-free) Fourier modes were present. Thus, mainly owing 
to the limited number of Fourier modes, the grid used in the simulation was not 
sufficient to resolve the flow up to regions of fully developed turbulence. The results 
were reliable only up to a distance of about 500mm from the leading edge, which 
corresponds to a Reynolds number based on momentum thickness of R e r  = 575. 

For the simulation of the experiments on controlled transition by Kachanov et 
al. (1985), Rist & Fasel (1994) introduced disturbances via their boundary condition 
for the wall-normal (v-) velocity component. This boundary condition simulated 
periodic suction and blowing within a narrow strip (oriented normal to the flow 
direction) on the flat plate. As in the experiments, these disturbances are periodic in 
time and symmetric with respect to the (x, y)-plane. As the Navier-Stokes equations 
preserve such symmetries, Rist & Fasel were able to restrict their simulation to flow 
fields that are likewise symmetric with respect to the (x, y)-plane. Some further 
implications of this restriction, particularly concerning the application of POD to 
such flow fields, were discussed by Rempfer & Fasel (1994). In short, this symmetry 
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‘250 mm 

FIGURE 1. Integration domain of numerical simulation by Rist & Fasel (1994). 

assumption leads to the flow fields not being homogeneous in the spanwise direction. 
Therefore, our eigenfunctions cannot be factored into products of some function 
of x and y and simple sinusoids for the spanwise direction, but describe fully three- 
dimensional structures. 

In the investigations reported here, we confined ourselves to a small subregion of 
the integration domain. While the integration domain of the simulation covered the 
flat plate in the range 190 mm < x < 800 mm, this region extends from a streamwise 
distance of about x = 403mm from the leading edge of the flat plate up to about 
x = 450mm. Within this range, the spike stages of transition up to the three-spike 
stage can be observed. The region is about 8.77mm in the wall-normal direction, 
which corresponds to 2.5 boundary-layer thicknesses, and 24.5 mm in the spanwise 
direction. Using a free-stream velocity of 9.09 m s-l, the Reynolds number based 
on momentum thickness can be calculated as R e r  = 340 at the upstream and 

= 460 at the downstream boundary. The dimensions of the region in wall units 
are Ax+ = 1600, Ayt = 288, and Az+ = 805. The ensemble of flow fields used in 
this work consisted of 440 equally spaced time steps within one time period of the 
imposed disturbances. The region investigated here was discretized using 161 x 97 grid 
points for the streamwise and wall-normal coordinates, respectively, and 16 Fourier 
modes for the spanwise direction. 

3. The dynamical equations 
In the following, we derive equations for the dynamical behaviour and for the 

energy of the coherent structures. This derivation will be based on the properties of 
the coherent structures as defined by the eigenfunctions of a Karhunen-Loive decom- 
position (or proper orthogonal decomposition, POD) of the flow. We briefly review 
some of the properties of the Karhunen-Loive eigenfunctions that are particularly 
relevant to our research; however, we do not go into details of the POD method 
itself. For a short basic description of the fundamental approach of this method, the 
reader is referred to Rempfer & Fasel (1994). A more detailed and complete account 
is given by Lumley (1970), Sirovich (1987), and Berkooz et al. (1993). 

In contrast to our previous paper (Rempfer & Fasel 1994), the coherent structures 
for the investigations reported here were calculated from the fluctuating flow, u’ = 
u - uB, where uB = (u) denotes the mean flow. We use the angle brackets (.) to 
describe time averages that, in our case of equally spaced time steps, reduce to 
ordinary arithmetic mean values. For convenience of notation we also use the symbol 
60 = (u) for the base flow. 
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The eigenfunctions a,(x) of the POD giving the three-dimensional velocity fields of 
the coherent structures form an orthogonal system and we normalize them according 
to 

( G G , )  = A&,, (3.1) 

(3.2) 

where the parentheses (., .) denote the scalar product 

(Wq = s, ndx) . q ( x )  dx 

in the Hilbert space of square-integrable, real functions ( D  is the three-dimensional 
domain considered). In (3.1), 6,, denotes the Kronecker-Symbol, and A, are the eigen- 
values of the Karhunen-Lobe decomposition corresponding to the eigenfunctions a,. 
This set of eigenfunctions 1s complete in the sense that the flow fields of the given 
ensemble can be expanded in the eigenfunctions via 

u'(x) = u(x, t e )  = C cl(te)al(x), i = 0, I, 2,. . . , (3.3) 
1 

where 

(3.4) 

The expansion coefficients are uncorrelated in time and, with the normalization (3.1), 
their mean-square values equal unity, 

The eigenfunctions ai can be represented as linear combinations of the instanta- 
neous flow fields, 

e 
so that these eigenfunctions inherit all those properties of the instantaneous flow fields 
that can be described by linear, homogeneous time-independent equations. Thus, it 
is clear from (3.6) that, in our case, the eigenfunctions a, describe solenoidal vector 
fields representing kinematically possible velocity fields of an incompressible flow. 

It has also been demonstrated (Rempfer & Fasel 1994) that the Karhunen-Loeve 
problem for the spatially evolving boundary layer is near degenerate, yielding pairs 
of eigenfunctions with almost identical eigenvalues (see also Aubry, Guyonnet & 
Lima 1992). In Rempfer & Fasel (1994) we concluded that the dynamical coherent 
structures 5,(x, t )  of our transitional boundary layer are represented by pairs of 
eigenfunctions with almost identical eigenvalues according to 

(3.7) 

Each of these pairs of eigenfunctions describes a coherent structure that is moving 
in the streamwise direction. In parantheses we note that for the case of a parallel 
flow where structures of constant shape are travelling downstream at constant speed, 
the eigenvalue problem of the POD would be exactly degenerate, yielding pairs of 
identical eigenvalues, and corresponding pairs of eigenfunctions that are exact phase- 
shifted copies of each other. We will refer to G~ as the 'coherent structure of order i' 
or the 7th-order coherent structure'. 

Our goal is the derivation of a low-dimensional model of the flow in the form of 
a set of ordinary differential equations for the dynamical behaviour of the coherent 

5 1 ( ~ ,  Y ,  z ,  t )  = ~ 2 1 - 1 ( t ) ~ 2 ~ - 1 ( x 2  y ,  z )  + c2i(t)a2~(x, Y ,  z ) ,  = 2,. . . . 
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structures. To be able to do this, we first have to discuss the problem of boundary 
conditions. The boundary conditions at the wall, y = 0, and at the free-stream 
boundary, y = y,,,, as well as the boundary conditions for the spanwise direction, 
can be expressed by linear homogeneous equations. At the wall, we simply have u = 0, 
and for the free-stream boundary Rist & Fasel (1994) used conditions of the form 

au  
- + c u = o ,  c > o ,  
aY 

corresponding to exponential decay. For the spanwise direction, periodicity was 
enforced by the Fourier representation chosen. From the property given in (3.6), it can 
be readily seen that these boundary conditions are met by each of the eigenfunctions 
individually. 

However, we do not know a priori what the boundary conditions at the in- 
and outflow boundaries should be. As we are considering only a subregion of the 
integration domain of the direct simulation, the streamwise boundary conditions 
used in the simulation (Kloker et al. 1993) do not apply to our problem. It is 
tempting to argue that, as these boundaries are just virtual ones that do not have 
any physical correspondence in the real flow, they should impose no forces on the 
coherent structures. This argument is not valid because, in principle, influences via 
pressure fluctuations from upstream or downstream of the domain considered are 
indeed possible. In the work of Aubry et al. (1988), for instance, such influences had 
to be modelled because the flow in the subdomain of the boundary layer being treated 
- only the near-wall region of the flow was considered - is virtually driven by such 
pressure fluctuations from ‘outside’, which in that case are acting on the upper (free- 
stream) boundary. On the other hand, Deane et at. (1991) did not have to account 
for their boundary conditions separately because of either periodicity assumptions 
for the channel flow that they studied, or because of homogeneous conditions in their 
other case of a flow past a cylinder. In Noack & Eckelmann (1993), problems with 
the boundary conditions could be avoided by constructing a basis of eigenfunctions 
each of which individually satisfies each of the boundary conditions. Here, in our 
model we will introduce the additional assumption that influences from the upstream 
and downstream boundaries can be neglected. Then, after deriving the dynamical 
equations using this assumption, we will demonstrate that the simplification involved 
can indeed be justified. 

We can start from the precondition that all of the boundary conditions are already 
met by each of the eigenfunctions ai. As the continuity equation for incompressible 
flow, V - a i  = 0, is also met by each of the eigenfunctions, the dynamics of the coherent 
structures should be prescribed by the momentum equation of the flow alone. For 
the case of incompressible flow without volume forces, this equation reads 

au 1 
- + U ’  V U  = - -Vp + VAU, 
at P 

(3.9) 

where v denotes the kinematic viscosity. Introducing the expansion (3.3) and ap- 
plying a Galerkin procedure to the resulting equation is, however, not completely 
straightforward owing to the pressure term in (3.9). As the pressure is connected to 
the velocities via the Poisson equation 

(3.10) 

the pressure is a nonlinear functional of the velocities, and there is no simple 

1 
-Ap = V U :  ( V U ) ~ ,  
P 



264 D. Rempfer and H .  F. Fasel 

representation of this term in the expansion coefficients l i .  We can transform the 
volume integral for the pressure term that results from the Galerkin procedure to a 
surface integral of the form 

(3.11) 

where n is the outward normal on the domain D considered. It is then readily seen 
that this integral will, in our case, yield contributions only for the inflow and outflow 
boundaries of D, and these contributions are often assumed to be small (Rajaee, 
Karlsson & Sirovich 1994). Our assumption concerning the influence of the boundary 
conditions as discussed above does exactly correspond to the omission of this pressure 
term. 

There is, however, an alternative way to derive the evolution equations, that we 
present in the following. Eliminating the pressure in (3.9) by taking the curl, we get 
the vorticity transport equation 

(3.12) 

with the vorticity vector w = V x u. To get an evolution equation for the coherent 
structures, we introduce the expansion (3.3) of the flow field in the eigenfunctions of 
the POD. The vorticity required in (3.12) is given by 

w(x, Y , Z ,  t) = C Si(t)a:(X, Y , z ) ,  (3.13) 

am 
at 
- = o . V u - u . V o + VAW, 

where a? is the vorticity field of ai, 

a? = v x ai = X q c w "  (3.14) 
G 

Introducing (3.3) and (3.13) in (3.12) we arrive at 

(3.15) 

By applying Galerkin projection to the equation above, claiming that the equation 
holds exactly within the function space spanned by the a:, we get the system of 
ordinary differential equations 

where 

Tij = (a?, oT), (3.17) 

N i j k  = (br,ay ' Vak J ' vdr), (3.18) 

bij = (a:, A G ~ ) .  (3.19) 

The matrix Ton the left-hand side of (3.16) is a consequence of the fact that the 
vorticities a? of the eigenfunctions ai, in general, will not form an orthogonal system 
(but they will still form a linear independent system). Multiplying with the inverse T-' 
we finally get 

(3.20) 
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with 

(3.21) 

(3.22) 
1 

We note that the inversion of the matrix T is, in general, not a trivial procedure 
within the framework of a Galerkin projection. In order to keep the truncation error 
under control, actually this (infinite-order) matrix would have to be inverted before 
the system is truncated, which is of course not possible. In our case, however, the 
matrix T is almost diagonal (or, in other words, the Karhunen-LoZve eigenfunctions 
of the vorticity field of the flow are almost identical with the vorticities of the 
eigenfunctions of the velocity field). Therefore it is plausible that our course of 
action does not introduce large additional errors in the coefficients Nijb and Di j .  We 
did check this by deriving our dynamical equations both in the primitive-variables 
formulation (3.9) as well as in the vorticity-transport formulation (3.12). We found 
that the equations derived from (3.12) were able to model the dynamics of our 
coherent structures more faithfully than the ones derived from( 3.9)t. 

Equation (3.20) describes the temporal evolution of the expansion coefficients ri(t) 
and thus the dynamical behaviour of the coherent structures. The first, quadratic 
term on the right-hand side of (3.20) describes nonlinear interactions between the 
coherent structures, and the second term describes the influence of viscosity on the 
motion of the structures. 

Before proceeding with the energy equations, we will show that the decision to 
neglect the influence of the upstream and downstream boundaries is justified. Towards 
this end, a comparison of the evolution in time of the expansion coefficient l s ( t )  as 
calculated by integration of (3.20) to the time behaviour of this coefficient as calculated 
from data of the direct numerical simulation by Kloker (1993) is shown in figure 2. 
The dashed line was obtained by evaluating (3.4) using the data base delivered by the 
direct simulation. As can be seen, extremely good agreement is obtained, indicating 
that, indeed, in our case the influence of the boundaries can be neglected. 

In deriving the energy equations of the coherent structures, we define the energy of 
the flow by 

e(t) = - u2(x, t )  dx. :s, 
The contribution of an eigenfunction ci to the energy of the flow is given by 

so that 

(3.23) 

(3.24) 

(3.25) 

Using (3.20), we arrive at 

(3.26) 

t We note, however, that this difference cannot be attributed to the omission of the pressure term 
in the second case. By using the pressure fields as calculated in the direct simulation and adding 
the pressure term to the right-hand side of the model equations we could verify that the influence 
of this term can indeed be neglected. 
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FIGURE 2. Comparison of (5-coefficients as calculated from data of direct numerical simulation to the 
behaviour as computed by integration of (3.20) : , model; - - -, direct simulation. 

Equation (3.26) describes the variation in time of the energy of the flow field being 
induced by the eigenfunction with index i depending on the values of all the expansion 
coefficients. The first term on the right-hand side of (3.26) describes variations of 
the energy that are due to the nonlinear terms of the Navier-Stokes equations. The 
second term on the right-hand side describes the influence of dissipation on the energy 
of the flow field induced by the eigenfunction ni. 

Additional understanding can be obtained by looking at the time average of (3.26). 
Because the expansion coefficients are uncorrelated in time, equation (3.9, we get 

At N i j k ( < i < j < k )  + V A i D i i  = 0. (3.27) 

-v 
j ,k 

Pi g i  

This equation contains the ‘production term’ Pi and the ‘dissipation term’ gi. The 
elements on the main diagonal of D are all negative, so gi describes the energy loss 
of the flow field being induced by ni that is due to dissipation. Thus, it is clear 
why Pi is called a ‘production term’: this term denotes the energy gain of the flow 
field corresponding to oi that is due to interactions with other structures and the 
base flow. This energy gain has to balance the continuous loss of energy caused by 
dissipation. Pi is a sum of the terms 

n i j k  = A i N i j k ( < i < j < k ) ,  (3.28) 

which give the average energy gain (or loss) of the flow field being induced by ni 
from the interaction with the flow fields corresponding to oj and crk.  

Concerning these interaction terms, nijk, some additional remarks are in order. It 
should be noted that the interactions described by the instantaneous values n i j k (  t )  = 
A i N i j k < i ( t ) c j (  t ) < k ( t )  are, in general, non-conservative. Thus, for example, a sum of 
terms nijk + n i k j  + njki + njik + nkij + 1 7 k j i ,  in general, will not be zero or, to choose 
a still more elementary example, terms like Uiii, describing a ‘self-interaction’ of an 
eigenfunction, do not vanish in general. The reason for this is that a certain flow field 
formed by the superposition of certain eigenfunctions can act as an energy source 
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FIGURE 3. Isosurfaces and time behaviour of first-order structure, contribution to disturbance en- 
ergy: 81.8%. (403rnm < x < 450mm). (a) Isosurface u = 0.6rns-'. (b)  Isosurface u = 0.06rns-'. ( c )  
Time behaviour of (-coefficients: , (1; - - -9 i 2 .  
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FIGURE 4. Isosurfaces and time behaviour of third-order structure, contribution to disturbance en- 
ergy: 2.38%. (403mm < x < 450mm). (a) Isosurface u = 0.3ms.-'. ( b )  Isosurface v = 0.1 ms-'. (c) 

[ [ Time behaviour of [-coefficients: 1 5 ,  3 6 .  
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(or sink) just because of the structure of the corresponding velocity distributions. Of 
course, the averaged terms n i j k  are likewise non-conservative. 

Four different kinds of interactions can be discerned. 
(a) 'Self-interactions' of the velocity field of an eigenfunction. Because niii = 

kiNiii[:, these energy flows change sign according to li. 
(b)  Binary interactions, which can be subdivided into 

(i) terms of the form niji and n,. The sign of these terms only depends on the 
sign of lj. Because niji and Eiij show exactly the same kind of dependency on 
the [-coefficients, they both describe the same interaction. We will therefore lump 
the two into one single term below. 
(ii) terms of the form Ui,,, the sign of which only depends on [;. 

(c) Tertiary interactions of the flow fields of three eigenfunctions. Again, the two 
terms nijk and nikj describe the same interaction and are lumped in the following. 

It has been shown (Rempfer & Fasel 1994) that the dynamical coherent structures 
of the flow are formed by the superposition of a pair of eigenfunctions (see (3.7)). 
Therefore, from a coherent-structures point of view, we are more interested in the 
energy flows between the coherent structures than in those between eigenfunctions. 
Accordingly, we define the energy e: of a coherent structure by 

eXt) = +(Li[;;-l(t) + 22i[;i(t)), (3.29) 

and we will investigate the average production 9; of the ith-order coherent structure 

@: = k2i-1 N(Zi-l)jk(C2i-l[j[k) + 1 2 i  N(Zi)jk([2i[j[k), (3.30) 
j,k j ,k  

as well as the average dissipation 9:, 

9; = ~22i-1D(~i-1)(2i-1) + ~22iD(2i)(2i). (3.31) 

The contributions of the different interactions will also be summed over the pairs of 
eigenfunctions involved, 

2i 

f i ; k =  5 Illrnn, i = 1 , 2  ,..., j , k = 0 , 1 ,  . . . .  (3.32) 
I=2i- 1 m=max(0,2 j- 1 ) n=max(O,2k- 1 ) 

Because of the above-mentioned fact that terms like f i G k  and fi$i describe the same 
kind of interaction, we will finally summarize them and define the interaction fl& of 
coherent structures by 

(3.33) 

The considerations given above concerning the interactions between eigenfunctions 
can be transferred analogously to the case of interactions between coherent structures. 

n.. - - f i G k  . .  + fiij, k f j ,  175.. 1JJ = fi?.. 111. 

4. Coherent structures of the spike stages 
In the next sections, we investigate in detail the averaged and the instantaneous 

energy flows between the coherent structures using a set of 17 of the most energetic 
structures. All the results presented in the following will be based on equations 
derived for this set of structures that comprises 34 eigenfunctions of the Karhunen- 
Loeve decomposition. The corresponding coefficients Nijk and Djj were calculated by 
numerically integrating the scalar products (3.21) and (3.22) using the second-order 
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1 ( e 3  E: 

1 8.01 x 10-7 8.18 x 10-1 
2 9.29 x lop8 9.49 x lop2 
3 2.33 x lo-* 2.38 x lop2 
4 2.00 x 2.04 x lo-* 
5 1.19 x 1.22 x 
6 8.18 x lop9 8.36 x 
7 5.52 x lo-' 5.64 x 
8 4.19 x lop9 4.28 x lop3 
9 2.85 x 10-9 2.91 x 10-3 

10 2.15 x 10-9 2.20 x 10-3 

12 1.15 x 10-9 1.18 x 10-3 
11  1.70 x 1.73 x lop3 

13 8.53 x 1O-Io 8.71 x 
14 6.38 x lo-" 6.52 x 
15 4.56 x 1O-Io 4.66 x 
16 3.56 x lo-'' 3.64 x lop4 
17 2.63 x lo-'' 2.69 x 

TABLE. 1, Absolute and relative energies of the first 17 Karhunen-Loeve eigenfunctions (absolute 
energies are given in m5/sz). 

trapezoidal rule. Note that in order to get the terms of the energy equations discussed 
above, it is not necesssary lo actually integrate the system (3.20). The [-coefficients 
that are needed for the evaluation of these terms are already known from the data of 
the direct numerical simulation via (3.4). 

The relative energies of these 17 structures are given in this section to enable mental 
visualization. Also, certain details concerning the appearance and behaviour of two 
selected structures that play a particularly important role in the following treatment 
are presented. A more detailed account of the phenomenology of the structures at 
the spike stages of transition can be found in Rempfer & Fasel (1994). 

The averaged absolute energies (e:)  are given in table 1, along with the relative 
energies E: of the structures considered, where 

j= 1 

These relative energies give a first hint of the contribution of the structures towards 
the overall dynamics of the flow. It can be seen that the 17 structures considered 
here capture more than 99.8% of the energy of the disturbance flow u'. Of these, 
the first-order structure alone captures almost 82% of the disturbance energy. The 
energies of the higher-order structures show approximately exponential decay. This 
is an indication of the fast convergence of the Karhunen-Loive decomposition and 
it can indeed be shown (Lumley 1970) that, of all possible decompositions, the one 
defined by the Karhunen-Loive procedure needs the smallest number of modes to 
represent the flow field to a given accuracy in the energy. 

Figures 3 and 4 show the first- and third-order structures, the structures being 
represented by isosurfaces of the streamwise (u-) and the wall-normal (u- )  velocity 
components. Additionally, in these figures, the time behaviour of the expansion 
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coefficients corresponding to the eigenfunctions that form the structures are shown, 
giving an idea of the dynamical behaviour of the structures. In the case of the 
first-order structure the contour surface of the u-velocity component shows the shape 
of the well-known A-vortex. This A-vortex is in fact the most prominent structure 
of the transitional boundary layer within the region we are investigating here, and 
has also been found in numerous experiments (see, for example, Williams, Fasel & 
Hama 1984, and Perry, Lim & Teh 1981). From the behaviour of the corresponding 
expansion coefficients, it can be seen that the energy of this first-order structure, which 
is approximately proportional to the sum of the squares of the expansion coefficients, 
is almost constant in time. 

In the following, we will generally use the term ‘A-vortex’ to denote this first- 
order coherent structure, that is, we dejne the term ‘A-vortex’ to label the first-order 
coherent structure at the spike stages of transition in our flat-plate boundary layer. 
Owing to the similarity in appearance and behaviour of our first-order structure 
and the entity that has been termed ‘A-vortex’ by experimentalists, we find this 
identification justifiable. 

The second-order structure not shown here is similar in appearance to the first- 
order structure, the main difference being a reduction of the streamwise scales by a 
factor of two. Also in analogy to the first-order structure, the second one moves with 
a constant velocity and its energy is (almost) constant in time. 

The third-order structure in figure 4 is remarkably different from the first-order 
one. From the u-velocity surface, it can be seen particularly clearly that most of the 
energy of this structure is located near the downstream end of our domain, which 
is where the spike signals of transition occur. From the behaviour of the expansion 
coefficients, it can be seen that the energy of this structure rises steeply during a certain 
phase of its evolution. That this behaviour is strongly connected to the occurrence of 
the spike signals is demonstrated in figure 5. There, the u’-signals, that are induced 
by the first six coherent structures, are shown for a location where the spike signal 
is most pronounced. It can be seen that the third-order structure yields the largest 
contribution to the characteristic negative spike. It is an interesting question to ask 
what the underlying mechanism of the sudden rise and fall of the energy of this 
structure could be. This question will be addressed in $6. 

Note that the third-order structure discussed here corresponds to the fourth-order 
structure in region D2 in our previous paper (Rempfer & Fasel 1994). The different 
indices are due to the fact that the region considered here is shorter and situated 
more downstream than the one from our preceding paper. As there is, particularly 
within the region of the spike stages, a rapid streamwise growth in energy of the 
disturbances in our boundary layer, this difference in streamwise location leads to 
a different numbering of the various coherent structures, since these are ordered 
according to their average energy. 

To conclude this section, we would like to add some remarks on the general problem 
of identifying coherent structures using Karhunen-Loive eigenfunctions. Basically, 
we think that the defining properties of the POD eigenfunctions of the velocity field 
- in particular their energy optimality - are significant enough to warrant a detailed 
investigation of the entities described by these functions. Whether or not one wants to 
call these objects ‘coherent structures’ may be a matter of taste, but our previous paper 
shows that there indeed seems to be a close relation between the decomposition of 
the flow field as prescribed by the Karhunen-Lokve procedure and the decomposition 
human observers typically perform based on their intuition. In particular, this means 
that there are qualitative differences in shape and/or evolution between the different 
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FIGURE 5. Time signals of u'-component of coherent structures at x = 445 mm, y = 4.22 mm, z = 0. 
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coherent structures as defined by (3.7). For instance, the first- and third-order 
structures described above are completely different in their appearance as well as 
in their behaviour. While the first-order structure is smoothly moving downstream 
at almost constant energy, the third-order structure, representing an ejection-like 
event during a spike, is moving mainly in the wall-normal direction while hardly 
changing its location along the streamwise coordinate, and it shows sharp variations 
in its energy (see also Rempfer & Fasel 1994 for a more detailed description of the 
kinematics of these coherent structures). Our investigations presented here also show 
that certain clear-cut events of our transitional boundary layer - like the spikes - are 
quite well captured by the action of distinct structures gi, and in that sense the qi 
form a basis of physically significant eigenfunctions. 

5. Average energy flows 
We have investigated in detail the different contributions of the coherent structures 

to the averaged energy balance. Toward this end, we calculated the first 34 eigenfunc- 
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i absolute 
1 1.57 x lop6 
2 3.01 x 10-7 
3 1.23 x 10-7 
4 1.17 x 10-7 
5 7.53 x 10-8 
6 5.61 x lo-' 
7 4.09 x 
8 3.20 x lop8 
9 2.64 x 

10 2.34 x 
11 1.81 x 
12 1.40 x 
13 1.13 x lop8 
14 9.81 x lop9 
15 8.46 x low9 
16 6.40 x lop9 
17 5.22 x 10-9 

relative 

3.92 
6.48 

10.54 
11.72 
12.62 
13.70 
14.81 
15.30 
18.51 
21.77 
21.33 
24.26 
26.42 
30.75 
37.07 
36.00 
39.77 

absolute 

-4.48 x lop8 
-2.61 x 

-1.91 x 

-1.39 x 

-2.89 x 10-7 

-3.09 x lop8 

-1.67 x lo-' 

-8.10 x 10-9 
-7.54 x 10-9 
-8.04 x 10-9 
-5.83 x 10-9 
-4.04 x 10-9 
-2.26 x 10-9 
-1.82 x 10-9 
-1.23 x 10-9 
-5.50 x lo-'' 
-6.40 x 

relative 

-0.72 
-0.97 
-2.24 
-3.10 
-3.22 
-4.08 
-5.03 
-3.88 
-5.29 
-7.47 
-6.86 
-7.02 
-5.29 
-5.70 
-5.38 
-3.09 
-4.87 

absolute 

-1.13 x 
-2.14 x 10-7 
-7.80 x lop8 
-6.81 x 
-4.57 x 10-8 
-3.12 x lo-' 
-2.05 x 
-1.79 x 
-1.40 x lo-' 
-1.18 x 
-8.67 x 10-9 
-6.21 x 10-9 
-4.98 x 10-9 
-4.24 x 10-9 
-3.67 x 10-9 
-2.81 x 10-9 
-2.04 x 10-9 

relative 

- 2.81 
- 4.61 
- 6.68 
- 6.84 
- 7.65 
- 7.62 
- 7.41 
- 8.55 
- 9.85 
-10.94 
-10.21 
-10.78 
-11.68 
-13.28 
- 16.09 
-15.82 
-15.52 

TABLE 2. Average energy gains Y;', losses Y;-, and dissipation 9; 
(absolute energies are given in m5 ss2). 

tions of the Karhunen-Loeve decomposition corresponding to 17 coherent structures, 
as well as the corresponding expansion coefficients ci. We then computed the matri- 
ces Nijk and Dij  from (3.21) and (3.22). Based on the expansion coefficients ci, we 
were then able to determine the interactions nGk. 

A first overview of the energy balance of the different coherent structures can 
be obtained from table 2, which summarizes the gains and the losses of energy 
for the coherent structures considered. The term 9; was split into the sum 9:' 
of energy gains and the sum 9;- of energy losses from the nonlinear interactions. 
The respective values were then multiplied by the integration time To of the direct 
numerical simulation and therefore directly represent the energies that the coherent 
structures lost or gained in interactions or that they dissipated during that time. In 
a second column, these energies have been divided by the average energies of the 
corresponding coherent structures in order to obtain relative energy gains and losses. 
From the relative energies in table 2, it can be seen that the coherent structures 
are highly active dynamical objects. During the time To - which in the case of the 
first-order structure is equal to the time the structure needs to move by a distance 
of the length of the structure itself - almost four times the energy contained in the 
velocity field of the structure is turned over. This behaviour is even more pronounced 
for the higher-order structures, which dissipate up to sixteen times their own energy. 

Furthermore, it can be seen that in the case of the first-order structure, the 
dissipated energy almost equals the energy gain g S +  for nonlinear interactions. 
In other words, almost all the energy this structure obtains from the interaction 
with other structures is dissipated immediately. For the higher-order structures, the 
quotient of dissipated energy and nonlinear energy gain decreases to just below 50% ; 
nevertheless, dissipation still represents by far the largest single contribution to the 
energy balance. 

If gains and losses from interactions and dissipated energy are added, a surplus 
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li,:,ppl+ 

i j - k  % j - k  % j - k  

1 0-1: 84.00 1-2: 15.54 1-1: 
2 0-2: 65.17 1-11 24.15 1-4: 
3 1-2: 50.88 1-3: 16.52 0-3: 
4 1-4: 33.47 1-2: 15.42 1-5: 
5 1-5: 20.24 1-3: 18.77 1-6: 
6 1-7: 16.25 1-4: 14.97 1-5: 
7 1-8: 13.89 3-4: 11.71 1-7: 
8 1-6: 15.07 1-8: 7.90 3-4: 
9 1-8: 25.34 1-6: 8.32 1-7: 

10 1-9: 29.30 1-5: 7.73 3-3: 
11  -10: 21.08 4-5: 8.62 4-7: 
12 -11: 19.10 4-6: 5.89 6-7: 
13 4-7: 13.71 1-12: 8.15 1-11: 
14 4-8: 11.98 1-12: 8.63 1-13: 
15 -14: 11.59 4-10: 5.80 7-9: 
16 -15: 13.71 4-12: 6.97 4-11: 
17 1-16: 13.73 6-11: 5.95 2-13: 

li;p; 

% 

0.26 
3.88 

15.80 
13.18 
13.08 
13.85 
11.06 
7.70 
8.15 
6.24 
4.90 
5.87 
6.79 
6.88 
5.63 
6.68 
4.37 

i j - k  % j -k  % j - k  % 

1 2-31 33.64 2-4: 9.87 4-41 7.75 
2 2-5: 12.91 2-6: 10.58 3-41 5.31 
3 1-51 33.97 2-4: 11.81 4-8: 6.85 
4 1-6: 15.57 4-8: 9.13 3-7: 7.88 
5 1-10: 6.58 1-8: 6.28 3-71 5.12 
6 2-7: 9.59 1-9: 9.36 1-8: 5.18 
7 0-7: 17.08 4-13: 9.34 2-8: 6.71 
8 4-14: 10.90 3-13: 9.82 0-8: 8.40 
9 1-10: 27.21 0-9: 22.20 7-15: 3.64 

10 0-10: 25.29 1-8: 18.99 1-11: 13.52 
11 0-11: 34.80 1-13: 11.02 4-15: 6.64 
12 0-12: 33.61 1-14: 15.06 4-16: 7.08 
13 0-13: 43.74 2-17: 7.09 5-16: 7.04 
14 0-14: 55.16 1-15: 12.20 5-17: 7.33 
15 0-15: 34.90 1-16: 25.18 4-17: 7.80 
16 1-17: 21.51 2-17: 12.23 3-15: 9.79 
17 0-17: 65.97 4-9: 8.11 6-10: 4.02 

TABLE 3. Largest gains and losses from interactions. 

of energy is found that, relative to the energy turned over, increases for the higher- 
order structures. This phenomenon is a consequence of the fact that only a limited 
number of structures could be considered. Therefore, particularly for the higher-order 
structures, interactions with the neglected structures are missing in the energy balance. 

We now address in detail the question of which interactions are the ones that deliver 
the energy being dissipated. Table 3 displays the largest three contributions, nGk, 
to the positive and negative production .!F+ and LP-,  respectively. The numbers in 
table 3 show the portion that the corresponding individual interaction contributes to 
the total gains and losses from interactions (see table 2). 
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Looking first at the energy gains, we can see that the first two structures get 
the main part of their energy from an interaction with the base flow go, and an 
additional considerable part comes from their mutual interaction. Almost all other 
structures, however, get the largest positive contribution from interactions in which 
the first-order structure is at least partially involved. For the third-order structure, it 
is the interaction with the first- and second-order structures that delivers more than 
50% of the dissipated energy and, for the fourth- and fifth-order structures, it is a 
binary interaction with the A-vortex that results in the largest contribution. For most 
of the remaining structures, the interaction with the A-vortex and a neighbouring 
structure is the most important one. Only the thirteenth and fourteenth structures are 
exceptional, but even there the interaction with the A-vortex is second in importance. 
Furthermore, it can be seen from the decay of the percentages that the number of 
interactions that substantially contribute to the energy balance of a structure is rising 
with the order of the structure. Thus, with rising order, the relation of the structures 
to other structures becomes more complex. 

In contrast to the case just discussed, the situation is not as simple when considering 
the energy losses, at least for the first nine structures, for which we find a variety of 
interactions that contribute most to the losses. However, from the tenth structure on, 
we see that the largest loss of energy results from an interaction with the base flow. 
Also, the situation is just the opposite of that for the energy gains: the higher the 
order of a structure, the higher the portion of the interaction with the base flow. 

Generally, the observations discussed above demonstrate the leading role that the 
A-vortex plays in the dynamics of the flat-plate boundary layer, in particular in 
the region where the spike stages occur. In view of the considerable share that 
the interaction with this structure contributes to the energy balance of all further 
structures, we can indeed conclude that all higher-order structures, and thus the 
dynamics of the flow as a whole, do depend strongly on the A-vortex. This A-vortex, 
on the other hand, gets almost all of its energy from the base flow. Changing the base 
flow in such a way as to stop this energy transfer would remove the preconditions 
for the existence of the A-vortex and all further structures, thus preventing transition 
to turbulence. However, it is quite probable that the changed base flow would then 
support different structures that, instead, would lead to transition. Nevertheless, it 
would be of interest to explore the effects of a modification of boundary conditions 
that would hinder the motion of the A-vortex. 

Also, we would like to point out that the picture of an energy cascade known 
from the theory of homogeneous turbulence is not suitable for describing the energy 
flows in the system of coherent structures during transition that we are considering 
here. Obviously, we do not have a situation where low-order structures pass energy 
to higher-order ones, which in turn pass their energy to still higher-order structures. 
Instead, most of the structures receive their energy 'in parallel' from the base flow and 
the A-vortex. Also, energy is not mainly just passed on from structure to structure with 
dissipation only occurring at the very highest orders, but rather, all of the structures 
immediately dissipate most of the energy they receive from nonlinear interactions. 

In the discussion above, we considered individual interactions between coherent 
structures. Now, we conclude this section with an overview of the structure of these 
interactions in a global sense. In other words, we are seeking answers to the question 
of whether the coherent structures do interact in an arbitrary fashion or whether 
definite schemes can be identified that exclude certain structures from interacting 
with other structures. To address this issue, the matrices of the averaged energy 
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flows, n&, for some selected structures are shown in figures 6 and 7 in the form of 
histograms in perspective representation. In figure 6, the histograms are viewed from 
above so that the positive a!. can be discerned most clearly. In figure 7, a view from 
below shows the structure o?:he negative contributions. 

FIGURE 6. Histograms of averaged energy flows li&. (a) 12th-order structure (i = 12). 
( b )  17th-order structure ( i  = 17). 

It can be seen clearly that the coherent structures by no means interact arbitrarily. 
For the positive interactions, the significant contributions group along a diagonal 
described by the equation 

for the indices of the structures involved, and the negative contributions occur near 
diagonals described by 

For the case of homogeneous turbulence, it can be shown (McComb 1990) that 
only modes, the wave vectors i, j ,  k of which form a triad such that i + j + k = 0, 
interact. Similarly as for homogeneous turbulence, for the case of the coherent 
structures considered here, certain interactions described by the equations above 
are preferred. However, in contrast to the equations for pure spectral modes, the 
equations (5.1) and (5.2) are not exact, rather they are just describing a preferred 
pattern for the interactions. Also note that there is a basic difference between the 
equations for wave interactions in homogeneous turbulence and our equations (5.1) 
and (5.2). While the former involve wavenumbers, the latter describe relations between 
indexing variables. The similarity between these equations does, however, suggest a 
connection between the two concepts. In our case, the link lies in the fact that, for 
most of our modes, the spatial scales involved are indeed closely connected to their 
indices in that the most energetic spatial scales of the eigenfunctions vary inversely 
proportionally to the value of their index. For example, the most energetic spatial 
scales of the eigenfunctions forming the second-order structure are about half the size 
of those for the first-order structure. 

Equation (5.2) for the preferred interactions for energy losses elucidates why, 

iw j + k  (5.1) 

i =  l j - k l .  (5.2) 
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FIGURE 7. Histograms of averaged energy flows nick. (a) 4th-order structure ( i  = 4). 
( b )  8th-order structure (i = 8). 

especially for the higher-order structures, a surplus of energy was found in the energy 
balance given in table 2. In order for the above equation to hold, at least one of 
the indices j or k has to be larger than the index i. In other words, significant 
energy losses occur only in interactions with higher-order structures. By truncating 
the expansion of the flow field at a certain index, the highest-order structures cannot 
pass on their energy and thus a surplus of energy must occur in the balance. 

6. Instantaneous energy flows 
After the discussion of the averaged energy flows in the system of coherent struc- 

tures, we will now explore the instantaneous values of the n& using a selected 
example. Looking at the time behaviour of the expansion coefficients corresponding 
to the third-order structure (see figure 4), a significant rise in energy of this structure 
can be observed between time steps 200 and 300. It was shown in $4 that this 
behaviour is connected to the occurrence of the characteristic spikes of the transition 
stage that we are investigating here. Therefore, it is of particular interest to find the 
causes of the strong variation in energy of the third-order structure. This variation 
can only be caused by nonlinear interactions. 

In figure 8, the development of the energy, e:(t), of the first six coherent structures 
is shown. The most noticeable behaviour is displayed by the energy of the third-order 
structure. From time step 200 to 260, this energy rises to six times its mean value and 
more than ten times its average value from the time before. Then, to time step 320, 
the energy falls back again to its previous value. Thus the question arises, ‘What 
causes these extreme variations in energy? To explore this issue, the instantaneous 
values of the matrix IZ;jk(t) at time step 250 (at the moment of steepest rise in energy) 
and at time step 270 (at the moment of steepest decay) are shown in perspective 
representation in figure 9. 

These histograms demonstrate that, in essence, one single interaction determines 
the behaviour of the energy of the third-order structure. The increase as well as the 
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t/At 

FIGURE 8. Behaviour of energy e!(t) of the first six structures. The energies have been divided by 
their time average. , ei ;  - - -, , e,5; , e:; , e: ;  ei ;  _ _ _ _ _ _  

1 

FIGURE 9. Histograms of instantaneous energy flows II:,k of third-order structure (i = 3). 
( a )  Time step t/Ar = 250. ( b )  Time step t /A t  = 270. 

decrease of the energy are caused by the energy gain and loss that the third-order 
structure suffers in an interaction with the base flow and the fourth-order structure. 
This can be seen most clearly when the time derivative of the energy of the third-order 
structure is compared to the contributions provided by the interaction 3-0-4 (i.e. the 
interaction between third-order structure, base flow, and fourth-order structure) and 
dissipation (figure 10). 

From figure 11, which shows instantaneous energy flows of the fourth-order struc- 
ture in an analogous way to figure 9 (both figures are drawn using the same scale 
factors), one can observe a kind of alternating play: almost exactly the energy that 
the third-order structure gains in the interaction 3-0-4 is lost by the fourth-order 
structure in the interaction 4-0-3, and vice versa. The fact that the development of 
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FIGURE 10. Contributions to the derivative de:/dt of the energy of the third-order structure. 
Values have been divided by the absolute of the average dissipation 9:. , de;/dt; 
_-_  n;,; . . . . . . . ....._. . , instantaneous dissipation. 

the energy of the fourth-order structure is not just a mirror image of the one of the 
third-order structure is due to additional interactions which contribute to the energy 
balance of the fourth-order structure, as seen in figure 12. 

1 

FIGURE 1 1 .  Histograms of instantaneous energy flows 176 of fourth-order structure ( i  = 4). 
(a) Time step t/At = 250. ( b )  Time step t/At = 270. 

From a coherent structures point of view, the cause of spikes can thus be explained 
as follows. First, it should be noted that the motion of the A-vortex (first-order 
structure) alone induces some negative u’ disturbance velocity (see figure 5) .  The 
sharp spike, however, is caused by a separate event. At the time instant of the 
formation of a spike, a certain coherent structure is ‘created’, the velocity field of 
which strongly enforces the negative deflection of the u’-signal. Although this third- 
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FIGURE 12. Contributions to the derivative de:/dt of the energy of the fourth-order structure. 
Values have been divided by the absolute of the average dissipation 9;. , dei/dt; 
- - - qo3; - .- . _  , n&; ..... . .... .... , instantaneous dissipation. 

order structure is actually present all the time, the term ‘created‘ seems to be justified 
in view of the considerable growth of energy of this structure during the spike. 

The course of events just described is completely independent of the A-vortex in 
the sense that the energy for the sudden growth of the third-order structure is almost 
completely obtained from an interaction with the base flow and the fourth-order 
structure and that this energy is also lost in the same interaction. On the other hand, 
the third-order structure is dissipating energy all the time. This dissipated energy 
cannot be supplied by the interaction 3-0-4 because the time average of the energy 
from this interaction contains only terms of the form A,Nljk ( c rcI )  that are zero because 
of (3.5). The investigations of the previous section have shown that the third-order 
structure gets the largest part of its energy in the time average from an interaction 
with the first- and second-order structures. Thus, the A-vortex so to speak ‘pays for 
the third-order structure’s keep’, but the actual spike is produced in an autonomous 
process where the flow fields of the third- and fourth-order structures and the base 
flow are superimposed in such a way that the energy of the third-order structure can 
rise considerably. 

These considerations support our statement made on a purely phenomenological 
basis (Rempfer & Fasel 1994), namely, that the behaviour of the coherent structure 
causing the spikes indeed seems to be due to an independent process and the spike 
itself cannot be described as just an epiphenomenon of the passage of a A-vortex. 

7. Discussion 
In summary, we would like to point out the considerable advantages of the 

application of the POD method in connection with Galerkin projection of the Navier- 
Stokes equations onto the basis of Karhunen-Loive eigenfunctions. First of all, the 
POD method supplies a completely unambiguous, precise mathematical definition of 
what is meant by the term ‘coherent structure’. Apart from the purely mathematical 
attractiveness of this definition, from our point of view, this property is one of 
the prime preconditions for such a notion to be meaningful. Only a strict definition 
actually allows comparison of results obtained by different researchers and in different 
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laboratories. In contrast, such strict definitions are often lacking in the conditional- 
sampling community, thus making it difficult to formulate statements that go beyond 
purely qualitative descriptions. 

Furthermore, we feel that the concept of a coherent structure is of little use as 
long as it is not possible to give a precise and comprehensive description of the role 
that these structures play in the dynamics of a flow. Often, such descriptions have 
been limited at most to statements with regard to the contribution of a structure 
to the turbulent energy or an estimation of its addition to turbulent production. In 
contrast, by investigating the energy equation of the coherent structures in this paper, 
we have shown how a detailed description of the dynamics of coherent structures can 
be obtained. With this approach, it is possible to uncover the mechanisms behind the 
behaviour of the coherent structures and thus find out, so to speak, ‘how the flow 
works’. 

Certain analogies between the spikes of transitional boundary layers and the 
bursting event in fully turbulent boundary layers had already been suggested (Rempfer 
& Fasel 1994). If these analogies rest on a physical basis, then the investigations 
reported here should also shed some light on the phenomena occurring in turbulent 
boundary layers. Thus, for example, of the models for bursting in fully developed 
turbulent boundary layers reported by Robinson (1991), our findings would exclude 
all those that do not include special autonomous processes causing the actual ejection. 
Numerical simulations employing increased spatial and temporal resolution - which 
we are planning in the near future - should lead to a fully turbulent state of the 
boundary layer. With data from such a simulation, we will not only be able to 
study the bursting phenomenon directly, but we can also attempt direct and detailed 
comparisons between the phenomena in fully turbulent and in transitional boundary 
layers. Thus the fairly speculative discussion of this topic can then be placed on a 
quantitative basis. 

Finally, by studying the system of ODE’S (3.20) describing the evolution in time 
of the coherent structures, it is also possible to apply the well-developed methods of 
dynamical systems theory to the dynamics of fluid flow. Such investigations have been 
reported by Aubry et al. (1988), Deane et al. (1991), and Zhou & Sirovich (1992), and 
it is hoped that this kind of research will enhance our fundamental understanding 
of turbulent flows. From such studies, we may expect an answer to the question, 
‘What relevance do the ideas around deterministic chaos have in the case of turbulent 
flows? For our flat-plate boundary layer, we have started investigations in that 
direction (Rempfer 1991, 1993, 1994), and this research will be extended in the future. 

This research was supported by grants from the Studienstiftung des deutschen 
Volkes, Germany, and the Office of Naval Research, USA. 
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